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SUMMARY

A parallel solver based on domain decomposition is presented for the solution of large algebraic systems
arising in the finite element discretization of mechanical problems. It is hybrid in the sense that it
combines a direct factorization of the local subdomain problems with an iterative treatment of the
interface system by a parallel GMRES algorithm. An important feature of the proposed solver is the use
of a set of Lagrange multipliers to enforce continuity of the finite element unknowns at the interface. A
projection step and a preconditioner are proposed to control the conditioning of the interface matrix.

The decomposition of the finite element mesh is formulated as a graph partitioning problem. A
two-step approach is used where an initial decomposition is optimized by non-deterministic heuristics to
increase the quality of the decomposition.

Parallel simulations of a Navier–Stokes flow problem carried out on a Convex Exemplar SPP system
with 16 processors show that the use of optimized decompositions and the preconditioning step are keys
to obtaining high parallel efficiencies. Typical parallel efficiencies range above 80%. © 1998 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In the finite element discretization of non-linear partial differential equations (PDE’s), it is
usual to solve large sparse matrix systems. The speed and memory size of a single workstation
are often insufficient, so powerful parallel computers are usually used. Among the various
techniques available for the parallel solution of algebraic systems, the domain decomposition
technique has become very popular because of its intrinsic parallelism [1–3]. Indeed, the
solution of the problems local to each subdomain is naturally parallel while the communica-
tion phase is restricted to the evaluation of interface quantities.

In this paper, a hybrid domain decomposition solver for general finite element computations
is proposed, which combines a direct solution of the subdomain problems with an iterative
treatment of the interface system. This work generalizes the dual Schur technique (FETI
method) proposed by Farhat and Roux [4,5] for the solution of symmetric positive definite
matrices, and extends it to the solution of general matrices.
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Briefly, the main features of the dual Schur approach are as follows. First, the finite element
mesh is partitioned in non-overlapping subdomains. In each subdomain, a local problem is
defined and solved by a direct Gaussian elimination. The continuity of the unknowns at both
sides of the interface are enforced by a set of discrete Lagrange multipliers. In other words,
interactions between the subdomains are expressed by Neumann boundary conditions applied
at the interface between adjacent subdomains. This approach can be considered as dual to the
Schur complement approach in the sense that Neumann conditions are used rather than the
usual Dirichlet conditions. An arbitrary mesh partition usually contains floating subdomains
where no Dirichlet conditions are applied. Therefore, the set of Lagrange multipliers must be
completed by ‘rigid modes’ of the floating subdomains in order to uniquely determine the
solution of the local problems1. The interface system is expressed in terms of Lagrange
multipliers and rigid modes. In this paper, a projection theorem is proposed to decouple the
computation of both sets of variables. The projected system is solved by a parallel GMRES
algorithm [6,7] where the preconditioner proposed by Farhat and Roux [4,5] is used to obtain
good scalability.

The quality of the partition plays an important role as far as parallel efficiency of the hybrid
solver is concerned. A two-step approach is used [8–10], wherein an initial partition is created
and further optimized by non-deterministic heuristics such as the Simulated Annealing
algorithm [11]. The goals of the optimization step are (a) the reduction of the interface size, (b)
the modification of the aspect ratio of the subdomains to control the conditioning of the
interface matrix, and finally (c) the adjustment of the number of elements in the subdomains
to balance the cost of the local factorizations.

The MIMD programming model in a distributed memory environment was chosen. Com-
munications between processors are performed by means of explicit message passing using the
parallel virtual machine (PVM) library [12]. Unless stated otherwise, each processor is assigned
a single subdomain.

Using the decompositions generated by the two-step approach, the hybrid solver for
Navier–Stokes flow problems has been tested on the Convex Exemplar SPP system with 16
processors. Typical parallel efficiencies range above 80% and the use of optimized decomposi-
tions and of the preconditioner lead to good scalability properties.

The remainder of this paper is organized as follows. In Section 2, the formulation of the
dual Schur method is derived. The projection theorem for decoupling the computation of
multipliers and rigid modes is also presented. Section 3 contains a description of the parallel
hybrid algorithm. The parallel issues are emphasized as well as the design of the precondi-
tioner. The generation of almost optimal decompositions adapted to the parallel solver is
described in Section 4. Finally, Section 5 presents results for Navier–Stokes flow problems
obtained on the Convex Exemplar SPP system with 16 processors.

2. PROBLEM FORMULATION

The formulation is based on the previous work of Farhat and Roux [5] which is extended here
to general (i.e. non-symmetric, non-definite) matrices.

Consider a physical problem defined on a geometry V. This problem can be modeled by a
set of PDE’s and some appropriate boundary conditions. The finite element discretization of
the problem leads to a non-linear algebraic system at every time step. This non-linear system

1 A rigid mode is any solution that satisfies the homogeneous equations associated to the local subdomain problem.
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can be solved by a standard iterative Newton–Raphson algorithm which requires, at every
iteration, the solution of the linear algebraic system:

Ku= f, (1)

where K is the stiffness matrix of size N6×N6, f is the load vector and u is the vector of the
nodal unknowns. With the exception of sparsity, we do not assume any particular property of
the stiffness matrix, i.e. it can be non-symmetric and indefinite.

In the dual Schur domain decomposition approach to the solution of Equation (1), the
domain V is decomposed into P non-overlapping subdomains V1 . . . VP. The interface between
the subdomains is denoted by G. Given a particular decomposition, the unknowns can be
sorted as interface unknowns and internal unknowns. Let u1 . . . uP denote the restriction of the
solution vector u to the unknowns internal to V1 . . . VP and uI be the restriction of the solution
vector to the interface unknowns (Figure 1). If the nodal unknowns of V1 are numbered first,
next those of V2, . . . and finally those of G, the finite element system (1) reads
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Here, the subscript I refers to the interface. The nodal values us (s=1, 2, . . . P) internal to
the subdomains are coupled indirectly through the interface unknowns uI. Note also that most
of the K-submatrices appearing in Equation (2) can be computed locally within one subdo-
main. Indeed, the only exception is KII, which is the sum of the contributions K II

(s) computed
in the different subdomains Vs (s=1, 2, . . . P).

2.1. Local systems

The stiffness matrix and load vector local to Vs read

K (s)=
�K ss

K Is

K sI

K II
(s)

�
, (3)

and

Figure 1. (a) Domain V decomposed in three subdomains V1, V2 and V3. The interface between the subdomains is
noted G; (b) interface variables u I

(1) of V1 and interior variables u3 of V3.
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Figure 2. Domain V decomposed into two subdomains V1 and V2. The vector l represents the ‘tractions’ needed to
‘join’ the two subdomains.

f (s)=
� f s

f I
(s)

�
. (4)

The variables associated to subdomain Vs are sorted as internal variable us and interface
variables u I

(s),

u (s)=
� u s

u I
(s)

�
. (5)

In the following, the dimension of K (s) is denoted by Ns. The total number of interface
variables is NI, and N I

(s) is the size of the interface between Vs and its adjacent subdomain(s).
If there is no interaction between the subdomains, the systems defined by Equations (3), (4)

and (5) can be solved independently in all subdomains. In general, however, some interactions
exist on the interfaces between the subdomains and they can be modeled by Neumann
boundary conditions applied on the interface. Mathematically, this corresponds to the fact
that, in a subdomain, the local equations related to the interface variables are not completely
assembled.

Let us define a vector of Lagrange multipliers l of size NI that represents these interactions.
This vector affects only the interface equations and, in Vs, it is defined as the contribution of
neighboring subdomains to the interface equations of Vs. For example, for a heat transfer
problem, the vector l can be seen as the heat flux that goes through the interface.

For illustrative purposes, let us assume that there are only two subdomains (Figure 2). In the
dual Schur approach, the systems local to V1 and V2 read

K (1)u (1)= f (1)−
�0

l

�
, K (2)u (2)= f (2)+

�0
l

�
. (6)

This set of equations is closed by imposing the continuity of the interface variables,

u I
(1)=u I

(2). (7)

In the presence of crosspoints, a multiplier is defined between any pair of connected
subdomains (Figure 3). This choice introduces redundant multipliers, but the overdetermina-
tion is easily removed by the relation between these local variables. In the example of Figure
3, the multipliers satisfy:

l12+l23+l31=0. (8)

In the general case of P subdomains, the system (6) local to Vs becomes
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Figure 3. Interface point (crosspoint) between three subdomains, V1, V2, and V3 and related set of Lagrange
multipliers.

K (s)u (s)= f (2)−B (s)T
l, (9)

where the matrix B (s) is a signed Boolean matrix that extracts the interface components of a
vector of Vs. In the two-subdomain example given above, we have B (1)= (0 I) and B (2)=
(0 −I). The set of systems (9) is closed by imposing the equality of the interface variables:

%
P

s=1

B (s)u (s)=0. (10)

2.2. Floating subdomains

In general, the formulation of the global finite element problem may be such that some of
the subdomains may not have enough Dirichlet boundary conditions to ensure a unique local
solution of system (9). Those subdomains are called floating subdomains. Their stiffness matrix
K (s) is singular and the solution of Equation (9) can be computed up to a constant vector
located in the null space of K (s). In the case of an incompressible 2D steady state Stokes flow
problem, if no Dirichlet boundary conditions are prescribed, there exists a family of velocity
fields, the solution of the problem and such that two velocity fields differ only by a constant
translation velocity (ux, uy).

A general expression of u (s) in Equation (9) can be written as the sum of a particular solution
and a translation in the null space of K (s). More precisely,

u (s)=K (s)+(f (s)−B (s)T
l)+N (s)a (s), (11)

where the matrix K (s)+ is the generalized in6erse2 of K (s), the matrix N (s) is made of the basis
vectors of the null space of K (s) and the vector a (s) specifies any linear combination of the
vectors of the null space. The vector a (s) serves to define a rigid mode of the subdomain.
Appendix A provides expressions for K (s)+ and N (s).

It is worth pointing out that for systems arising in the discretization of well-posed physical
problems, the rank of K (s) is close to Ns while the size of the null space is small. For example,
in the case of an incompressible 2D Stokes flow problem, only three parameters are sufficient
to uniquely determine the solution in a floating subdomain, whatever the size of the local
stiffness matrix.

An additional equation is now needed to determine a (s). If K (s) is singular and if the system
(1) has a unique solution (this usually holds if the physical problem is well-posed), the

2 The generalized inverse of K is the matrix K+ verifying the Moore–Penrose conditions: K+KK+ =K+, KK+K=
K, (K+K)T=K+K, and (KK+)T=KK+. If K is a square matrix of full rank, the generalized inverse is K−1 [13].
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right-hand-side of Equation (9) must belong to the range of K (s). Equivalently, it must be
orthogonal to the null space of K (s)T

. This condition is expressed as

M (s)T
(f (s)−B (s)T

l)=0, (12)

where M (s) contains the vector basis of the null space of K (s)T
. For symmetric stiffness matrices,

the expression of M (s) is identical to the expression of N (s).

2.3. Interface system

Finally, Equation (11) is substituted into (10), and (12) is used for the Q floating subdomains
to obtain the interface system, whose unknowns are the Lagrange multipliers and the rigid
modes. We obtain

� F I

−H I
T

−G I

0
��l

a

�
=
� d

−e
�

, (13)

where

FI= %
P

s=1

B (s)K (s)+B (s)T
,

GI= (B (1)N (1)…B (Q)N (Q)),

HI= (B (1)M (1)…B (Q)M (Q)),

d= %
P

s=1

B (s)K (s)+f (s),

e= (M (1)T
f (1)…M (Q)T

f (Q))T,

a= (a (1)T
…a (Q)T

)T. (14)

The system (13) can be solved using any appropriate technique. However, it is useful to
decouple the computation of l and a. The following proposition enables the decoupled
evaluation of the Lagrange multipliers and the rigid modes of the floating subdomains.

Proposition 1 With the abo6e notations, the solution of the system

� F I

−H I
T

−G I

0
��l

a

�
=
� d

−e
�

(15)

is gi6en by

!l

a

=
=

l0+PHl %

− (G I
TGI)−1G I

T(d−FIl),
(16)

where

l0=HI(H I
THI)−1e, (17)

and l % of size NI is the solution of the projected interface system
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(PG
TFIPH)l %=PG

T(d−FIl0), (18)

with PH (resp. PG) representing any projector onto the null space of H I
T (resp. G I

T).
Proof: See Appendix B.

In Proposition 1, the two projectors PH and PG are not uniquely defined. Any projection
of the form

PH=I−QH(H I
TQH)−1H I

T (19)

is a projection onto the null space of H I
T (assuming that the product H I

T QH is non-singu-
lar). The projection onto the null space of G I

T has a similar form and it makes use of a
matrix QG. If we choose QH=GI and QG=HI, the two projectors PH and PG

T are identical
which reduces the computational requirements of Equation (18). However, this single pro-
jector entails the solution of a non-symmetric system with the matrix H I

T GI in the evalua-
tion of PH in (19). In this work, we have preferred the definition of two orthogonal
projectors for which the matrix H I

T QH appearing in (19) is symmetric and positive definite.
This is achieved with QH=HI and QG=GI.

3. PARALLEL HYBRID SOLVER

A parallel hybrid solver is proposed in this paper, where the internal systems (9) are solved
by a direct method and the interface system (13) uses an iterative method. It is assumed
that the parallel computer has P processors available and that every processor is assigned
one single subdomain.

This choice results from several considerations: First, the interface matrix FI is sparse and
the various terms B (s)K (s)+B (s)T

are located in different subdomains. Therefore, it is essential
to avoid their assembly and the factorization of FI. Since iterative methods only require
matrix–vector products, their use avoids the explicit construction of FI.

3.1. Local subdomain systems

A matrix–vector product FIl is necessary at every iteration of the interface solver. This
product involves the evaluation of K (s)+u (s) (or, equivalently, the solution of a system with
matrix K (s)). Next, the null space of every floating subdomain must be computed. Therefore,
we have chosen to perform an explicit LU factorization of K (s). The products K (s)+u (s)

reduce to a pair of local forward–backward substitutions. During the factorization, a
column where a zero pivot is encountered is linearly dependent from the previous columns.
This gives a partition of K (s) into subblocks that are further used to compute the null space
(see Appendix A for details). In practice, a pivot is said to be zero if it is small compared
with the previous pivot.

In this particular implementation, a skyline format is used to store the local matrices. The
cost of the LU factorization is thus proportional to the number of variables and to the
square of the average bandwidth. It is clear that a more robust implementation could be
achieved with advanced techniques using partial or complete pivoting.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 23–46 (1998)
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Table I. Pseudo-code for the solution of the interface problem with the
projected GMRES(m) algorithm

3.2. Interface sol6er: parallel projected GMRES

Instead of solving Equation (13), the projected interface system (18) is solved, ensuring that
at each iteration, the descent direction pk belongs to the null space of H I

T and that the initial
solution l0 satisfies the constraint (17). The matrix FI is generally non-symmetric and
indefinite. Several iterative algorithms have been proposed to solve the non-symmetric problem
(see Reference [14] and the references therein). Here, a parallel GMRES algorithm was
implemented [6,7,15]. The pseudo-code for the algorithm is given in Table I.

3.3. Parallel issues

It is important to understand that every component of an interface vector3 is stored in the
two subdomains it belongs to. In the GMRES algorithm, the parallel issues are addressed in

the dot products: If 7 is an interface quantity of the GMRES algorithm and 7 (s) is the
restriction of 7 to the interface of Vs, the product 7T7 is computed by

7T7=
1
2

%
P

s=1

7 (s)T
7 (s). (20)

3 ‘Interface vector’, refers to the parallel vectors used in the GMRES algorithm for the evaluation of the Lagrange
multipliers and not to the primal interface quantities uI. Therefore, every interface vector is related to exactly two
subdomains (Figure 3).
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The factor 1/2 results from the fact that every portion of an interface vector is stored in two
different subdomains. In Equation (20), the local dot products are performed independently
while the summation consists of a global parallel function over all processors;
the matrix–vector products: The product by FI involves four steps: (a) the mapping of an
interface vector onto a local vector (multiplication by B (s)T

), (b) the solution of a system with
the matrix K (s), (c) the extraction of an interface quantity from a local vector (multiplication
by B (s)), and (d) the assembly of the local interface quantities (summation). The first three steps
are performed entirely in parallel, while the summation requires the exchange of a portion of
the interface vectors between neighboring processors. Since the manipulations with matrix B (s)

do not involve any floating point operations, the main computational part is performed during
the solution of the local systems;
the projection by PH and PG : The assembly and factorization of the matrix H I

THI should be
avoided since the data are located in different subdomains. We use a parallel CG algorithm
where every multiplication by HI requires a communication step (the multiplication by HI is
defined as the summation of the products B (s)M (s)). Note that the size of H I

THI is small
compared with the size of FI, and the solution of the system does not incur excessive additional
work.

3.4. Preconditioning

It is always useful to perform a preconditioning step to reduce the number of iterations. This
is especially true for the GMRES algorithm, since the algebraic complexity and the amount of
communication grow linearly with the iteration number (Point 3.2.2 of Table I).

The preconditioner described by Farhat and Roux [5] has been implemented. In the absence
of floating subdomains, the interface matrix reads

FI= %
P

s=1

B (s)K (s)−1B (s)T
. (21)

Every term of the above equation can be seen as the extraction and assembly of the interface
subblock of K (s)−1. If the interface variables are numbered last in every subdomain, it can be
shown that

B (s)K (s)−1B (s)T
=S (s)−1, (22)

where the matrix S (s) is the Schur complement matrix of K (s) defined by

S (s)=K II
(s)−KIsK ss

−1KsI. (23)

The inverse of the sum F I
−1 is approximated by the sum of the inverses and the following is

obtained:

F0 I
−1= %

P

s=1

B (s)�0
0

0
S (s)

�
B (s)T

. (24)

This expression provides an efficient preconditioner. It has also been used in Reference [5],
where optimality is discussed for symmetric matrices.

The evaluation of the preconditioner is not a trivial task. In general, the numbering of the
local variables is determined such as to minimize the bandwidth of K (s). The interface variables
are not necessarily numbered last and the Schur complement is not a by-product of the
factorization. Two methods have been considered for the evaluation of the product F0 I

−1l :
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I1 The explicit construction of S (s). This method requires the factorization of Kss and the
solution of N I

(s) systems (evaluation of K ss
−1KsI). During the iterative algorithm, every

matrix–vector product is performed without additional solution of local systems.
I2 The evaluation of the product S (s)7 without explicitly computing S (s). The matrix Kss is
factorized but the product KIsK ss

−1KsI is not computed. Every multiplication by S (s) during
the iterative GMRES involves the solution of a system and the multiplication by three
subblocks of K (s). This cost is close to that of the evaluation of FIl.

Both implementations are to be considered, depending on the problem. Method I1 requires
less memory. In fact, the size of the Schur matrix is smaller than that of the factors of Kss.
However, it is not clear which method is computationally better. There is a compromise
between the preprocessing step and the cost per iteration. Section 5.5 presents some results and
draws some guidelines to decide in favor of a particular method depending on the application.

4. AUTOMATIC PARTITIONING OF FINITE ELEMENT MESHES

The optimal (or at least near-optimal) partitioning of the finite element mesh is crucial to
obtaining reasonable efficiency in the hybrid solver. Ideally, the load in the subdomains must
be balanced while communications (and, by extension, the solution cost of the interface
system) must be minimized. In this section, the features of a ‘good’ decomposition are
analyzed, and the two-step methodology developed recently for the generation of quasi-opti-
mal decompositions is described [8–10].

4.1. Algebraic complexity

Estimation of the complexity of the algorithm highlights the sources of parallel inefficiency
and emphasizes the influence of the partition quality.

� The first loss of efficiency comes from an imperfect load balance of the local factorizations.
The number of operations required for the factorization of a local stiffness matrix, Ls, is
roughly proportional to the number of variables and to the bandwidth:

Ls8Ns× (Fs)2, (25)

where Fs is the bandwidth and Ns denotes the number of variables in Vs. The bandwidth
depends upon the ordering of the variables. In this implementation, the variables are
numbered consecutively as the finite elements are being processed. This means that there is
a relationship between the frontal width of the finite element mesh and the bandwidth of the
stiffness matrix. Therefore, minimizing the frontal width also amounts to decreasing the
bandwidth.

� Communications decrease the parallel efficiency of the parallel GMRES algorithm. They
occur in the parallel global summations and in the transfer of interface quantities between
neighboring processors. The number of global summations grows as the square of the
number of iterations (Point 3.2.2). The size of the transfers of interface quantities depends
on the local interface sizes and the number of transfers is proportional to the average
number of neighboring subdomains.

� The number of iterations needed to achieve convergence increases with the condition
number of the matrix FI [15,16]. Therefore, the interface matrix should have a condition
number as small as possible. Let hmax and hmin denote respectively the largest and smallest
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distance between two nodal points belonging to the same element in a finite element mesh. For
elliptic self-adjoint operators, Fried [17] has proven that the condition number of the stiffness
matrix is a function of the aspect ratio hmin/hmax [17]. The concept of aspect ratio can be
extended to meshes decomposed into subdomains. Indeed, in a domain decomposition method,
the interface matrix can be seen as the condensation of the stiffness matrix along the interfaces.
From this perspective, the subdomains are treated like super-elements. The aspect ratio (AR)
of a 2D domain has been defined here as the ratio of the surface of this domain over the
surface of its circumscribed circle4. By analogy, it can be reasonably predicted that the
condition number will depend on the aspect ratio of the subdomains, i.e. long subdomains will
generate interface systems that are ill-conditioned and difficult to solve iteratively.

4.2. Generation of decompositions

Considering the above discussion, an optimal decomposition must have subdomains with
circle-like or sphere-like shapes and with a small interface size. In addition, the number of
elements and their ordering in each subdomain must be adapted to ensure a low local frontal
width and a cost of the factorization that is almost identical in all the subdomains.

The problem of finding the optimal decomposition can be formulated as a graph partitioning
problem, where the computational domain is represented by a graph and where the features of
the parallel hybrid solver are modeled by a cost function to be minimized. The cost function
used in this work is defined as the weighted sum of three terms: (a) the number of interface
nodes, (b) the load imbalance where the load is estimated by Equation (25), and (c) the average
aspect ratio of the subdomains. Note that the third requirement makes use of the co-ordinates
of the nodes of the finite element mesh. Hence, our problem cannot be formulated, strictly
speaking, as a pure graph problem.

In general, the above partitioning problem, being NP-complete, is hopeless for seeking
optimal solutions. In References [8–10], a two-step strategy has been developed to compute
suboptimal decompositions:

� In the first step, a direct algorithm generates an initial decomposition. Representative direct
algorithms are the Greedy, RSB, or RGB algorithms [8,18,19]. These algorithms are
relatively fast but they are unable to systematically decrease the cost function. In addition,
all the subdomains have the same number of elements, which leads to load imbalance due
to different frontal widths.

� In the second step, this initial decomposition is optimized by minimizing the cost function.
This is performed by non-deterministic heuristics that transfer interface elements onto
neighboring subdomains. Various heuristics similar to the Simulated Annealing algorithm
[11] have been implemented. In addition, a graph contraction procedure speeds up the
optimization step.

The reordering of the elements after the optimization step should be avoided because this
would cause variations of bandwidth which would result in load imbalance. In our implemen-
tation, a reordering occurs at some critical points during the optimization and serves to
re-estimate the load. This enables the reduction in bandwidth while preserving an acceptable
load balance. The generation of optimized decompositions is described in References [9,20,21].

4 For 3D objects, the aspect ratio is defined as the ratio of the volume of the object over the volume of its
circumscribed sphere [21].
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The influence of the decomposition quality on the performance of the hybrid solver is
discussed in Section 5.4.

5. PERFORMANCE OF THE HYBRID SOLVER

The hybrid solver has been tested on the contraction channel (STEP) and the square cavity
(SQUARE) presented in Figure 4. For the STEP mesh, discretizations in 1200, 2700 and 4800
elements have been considered while the number of elements in the SQUARE mesh ranges
from 16×16 to 80×80 elements. The steady state incompressible Navier–Stokes equations
(Re=100) have been solved on these meshes, using a classical Galerkin formulation with
nine-node elements for the velocity field and four-node elements for the pressure field. The
various discretizations of the STEP mesh generate 11 213, 24 918 and 44 023 unknowns,
respectively. The number of variables of the SQUARE mesh ranges from 2467 to 58 403. In
the following, timing results obtained for the solution of one linear system arising in the
Newton–Raphson iterations are presented. The implementation I2 of the preconditioner was
used and the convergence criterion of the GMRES algorithm was set to tol=10−7.

The tests have been carried out on a 16-processor Convex Exemplar SPP system with a
global memory of 2 Gbytes. This machine allows the use of either a shared memory or a
distributed memory programming model. In the present work, the code is implemented using
the PVM message passing environment. The local configuration of the Exemplar dedicates one
processor to system administration; therefore, results with 1, 2, 4, 8 and 15 processors are
presented.

Figure 4. (a) STEP (1200 elements) and (b) SQUARE (1024 elements) finite element meshes.
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Figure 5. (a) Decomposition of the STEP mesh in 15 domains (zoom of the central part), and (b) decomposition of
the SQUARE mesh in 15 domains using the Greedy algorithm followed by the Simulated Annealing optimizer.

The decompositions of the STEP mesh have been produced by the two-step procedure
described in Section 4, using the Greedy algorithm followed by the Simulated Annealing
algorithm. The SQUARE mesh is decomposed by 2×1, 2×2 and 4×2 rectangles while the
decompositions in 15 domains are generated by our classical two-step approach. Typical
decompositions in 15 domains are presented in Figure 5.

5.1. Typical result

Figure 6 presents the typical evolution of the maximum subdomain factorization time Tfact

and the interface solution time Tinterf as a function of the number of subdomains. We observe
that Tfact decreases super-linearly with the number of subdomains P. This fact results from the
reduction of both the number of variables and the bandwidth of the local problems as the
number of subdomains increases. The interface size increases with the number of subdomains,

Figure 6. Evolution of Tfact, Tinterf, and Ttot as a function of the number of subdomains for the Navier–Stokes flow
problem on the 1200-element STEP mesh. The 30-domain problem has been run with 15 processors and the value of
Tinterf is estimated by the maximum local CPU time required for the solution of the interface system (communications

and idle time due to swapping are discarded).
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Table II. Parallel efficiencies obtained on the Convex Exemplar for the solu-
tion of a Navier–Stokes flow problem with the hybrid solver; (a) STEP and (b)

SQUARE meshes

4 8Ne P=2 15

(a)
0.81 0.931200 0.830.77

0.880.890.860.912700
0.92 0.854800 0.97 0.89

(b)
0.94 0.890.920.9816×16

0.99 0.98 0.96 0.8632×32
0.910.970.990.9948×48

0.99 0.9464×64 0.910.99
0.99 0.9480×80 0.83–

which increases the number of iterations taken by the interface solver. However, a decrease of
Tinterf up to eight subdomains can be seen. The reduction in Tinterf is a consequence of the
reduction in the cost of the local matrix–vector products (they require the solution of a system
with matrix K (s)) which overcomes the cost of the additional iterations. When the number of
subdomains is large, however, the gain due to the matrix–vector products becomes negligible
and the value of Tinterf grows. As a consequence, for any given problem (of fixed size), the total
solution time Ttot is minimized for some finite value of P. This value tends to increase with the
size of the finite element problems.

These results have been obtained with optimized decompositions. With the initial decompo-
sitions, the load of the factorization is not well balanced and the matrix–vector product
requires more computations. Therefore, the curve of Ttot is higher and the minimum appears
for lower values of P.

5.2. Parallel efficiency

It is not worth comparing the performance of the hybrid solver with that of the sequential
LU factorization of the global system (1). Indeed, a speedup figure would mainly measure the
difference between the algebraic complexities of the two solvers rather than an actual parallel
speedup. Consider the SQUARE mesh decomposed in two subdomains. The size of the local
stiffness matrices is cut by two and the bandwidths are reduced by 50% compared with the
global problem. This leads to a reduction of Tfact by a factor of eight. If the solution time of
the interface problem remains small, it is thus possible to achieve a super-linear speedup close
to eight.

For this reason, an alternative definition of parallel efficiency was used, given by

eP=
TP

1

P×TP
P , (26)

where TP
Q refers to the P-domain run on Q processors. Since the number of algebraic

operations needed to obtain TP
1 and TP

P are identical, the efficiency eP measures only the
communication overheads and the load imbalance.

Table II presents the parallel efficiencies obtained for the contraction channel and the square
cavity with P=2–15 processors and for various discretizations in Ne elements. For the STEP
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mesh, the efficiencies exceed 0.77, which expresses a high ratio of computations over commu-
nications, and a good load balance. Better efficiencies are obtained for the SQUARE mesh.
Indeed, the load is identical in every subdomain and the loss due to communications is small.

A decrease in efficiency is expected when the number of subdomains grows. For the
1200-element STEP mesh, however, eP increases first. For a particular problem, the perfor-
mance of the hybrid solver depends on the decomposition quality. For this test case, a better
load balancing is achieved with the partition in eight subdomains than with two subdomains
and this leads to a better efficiency. In general, comparing performance results obtained with
different number of subdomains is hazardous because of the different decomposition quality.

For this solver, communication speed may be a limiting factor to the parallel efficiency.
Since the orthogonalization step of the parallel GMRES algorithm requires a number of
parallel dot products proportional to N iter

2 , the communication latency must be very small. It
has been measured to 90 ms on the Convex Exemplar. Therefore, the ratio of computations
over communications is large and high efficiencies can be obtained. On the other hand,
networks of workstations have larger latencies and resulting efficiencies may thus be very low
(an efficiency of 60% was obtained with the 1200-element STEP mesh on a network of four
Silicon-Graphics workstations (R3000 and R4000)).

5.3. Scalability

Tables III and IV illustrate various timing results for the STEP and SQUARE meshes as a
function of the number of processors. Again, the focus is on the maximum subdomain
factorization time Tfact, the interface solution time Tinterf, and the total elapsed time Ttot. The
value of Ttot includes the factorization and the interface times as well as the cost of
preconditioning and some idle time due to synchronization requirements.

The factorization time Tfact decreases super-linearly with the number of subdomains due to
the conjugate reduction in the bandwidth of the subdomain matrices and number of local
variables. For a small number of subdomains, Tfact dominates the total solution time Ttot. It
is reasonable to think that the interface solution time increases with the number of subdo-
mains; however, Tinterf goes to a minimum. The reduction in Tinterf results from the reduction
in the time for local matrix–vector products that overcomes the cost of the additional
iterations when P increases. When the number of subdomains becomes large, the value of Tfact

becomes negligible and the total solution time is governed by Tinterf. The value of Ttot goes to
a minimum, the location of which depends on the mesh size and the decomposition quality.

The number of iterations grows relatively slowly with the number of subdomains. This is
crucial as far as the parallel scalability is concerned. In the symmetric case, Farhat and Roux
[5] observe that the preconditioned interface problem is numerically scalable, i.e. the number
of iterations grows extremely slowly as P increases.

Finally, the number of iterations remains almost constant for a fixed number of subdomains
as the discretization of the domain becomes increasingly finer.

Table III, shows that Niter grows from 31 iterations (first discretization with h=1/16) to 33
(h=1/80) for the solution of the interface problem with P=4. This looks promising but a
theoretical analysis is still needed to confirm the excellent scalability behavior of the precondi-
tioned hybrid solver.

5.4. Influence of the decomposition

Performance results of the hybrid solver with various decompositions in four subdomains of
the STEP mesh with 4800 elements are presented. The results illustrate the importance of the
optimization step. Similar results have been obtained in other test cases.
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Three different decompositions were used: (a) the initial decomposition provided by the
Greedy algorithm (GR), (b) the decomposition optimized by the Simulated Annealing al-
gorithm where all the subdomains have an equal number of elements (GR+SA/E), and (c) the
decomposition created by our two-step strategy (GR+SA/F) in which the number of elements
is adapted according to the frontal width of the subdomains.

The number of iterations for the interface problem depends on the interface size and the
conditioning of the interface matrix. The latter is a function of the aspect ratio of the
subdomains. Table V relates the performance of the parallel GMRES algorithm to the average
aspect ratio (AR) and the interface size (NI) of the decomposition. AR ranges between 0 and
1 (AR=1 for a disk).

It can be observed that the use of optimized decompositions clearly reduces the interface
solution time by a significant factor due to the reduction of NI and the increase of AR. As
expected, for equal interface sizes, the decomposition with the highest aspect ratio requires the
smallest number of iterations. This improves interface solution time by 20%.

The value of Tinterf/Niter is not influenced by the interface size nor by the communications
between neighboring processors. Indeed, the time per iteration is governed by the computa-
tional cost of the matrix–vector product and by the global parallel operations needed to
perform the dot products. In Table V, the reduction of the time per iteration is the result of

Table III. Performance of the parallel hybrid solver with the SQUARE mesh
for the solution of a Navier–Stokes flow on the Convex Exemplar

Niter Tjnterf (s)Ne Ttot (s)P maxs Ns NI Tfact (s)

016×16 0 141 2467 0 13
841928312752

178 0.5 31 4 64 659
55498 0.2368351

18 189959321515 0.1

032×32 0 5121 9536 0 503
2 109254851 1942163

4015281224674 338
12758 688 2 51 13 19

1 70 15 1915 736 1062

48×48 2899 0 0 29301 21 219 0
876811942524310 7312

32 54 3044 5427 498 130
2775 1008 10 53 348 58

31 411533 7215 41526

– – –64×64 1 37 507 0 –
19 188 34602 18 915 323 1651

11851243254465895394
69 53 78 2178 4851 1328

15 2658 2003 15 70 58 89

80×80 1 58 403 –0 –––
403 – – – –2 29 492

4 14 903 818 1600 33 289 3436
2068 6031505416487503

115 270812558 87408215

The local memory is insufficient to run the mono-domain problems on the 64×64 and
80×80 meshes as well as the two-domain problem on the 80×80 mesh.
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Table IV. Performance of the parallel hybrid solver with the STEP mesh for
the solution of a Navier–Stokes flow on the Convex Exemplar

Tfact (s) Tinterf (s) Ttot (s)NiterNe P maxs Ns NI

657 0 0 6691200 1 11 213 0
20 332 6878 203 82 185

6626 20244 3885 345
22138 1733 666 4 41

58 1415 978 1124 2 17

0 0 371336862700 1 24 918 0
22 1302 15 594 308 681 1437

44781301774 8856 575
30 63 56 1178 3625 1016

545 428415 2032 1677

– –4800 1 44 023 0 – –
42832992220132 27 539 408

733 32 220 17094 16 136 825
157 496781688 6884 1396

27 102 9715 1443485 2156

The local memory is insufficient to run the mono-domain problem with 4800 elements.

a better load balancing of the local matrix–vector products. Every local product requires the
solution of a local system with matrix K (s). Balancing the computational load of the
factorizations serves to balance the loads for the local forward–backward substitutions.

A proper load balancing of the local factorizations is crucial to reducing the synchronization
time before solving the interface system. In Table VI, the cost of the factorization is evaluated.
The measured load balance factor Lbfeff is compared with the predicted load balance factor
Lbfpred, defined as

Lbfeff=
Tfact

max Tfact

, Lbfpred=
Ls

max Ls

, (27)

Table V. Performance of the parallel GMRES algorithm for Navier–Stokes
flow in the STEP mesh, obtained for various decompositions into four subdo-

mains

Tinterf (s) Tinterf/Niter (s)AR NI Niter

7.0540830 2820.24GR
34 267 7.85GR+SA/E 0.24 323

6.87GR+SA/F 32 2200.32 325

Table VI. Statistics of the local factorizations for a Navier–Stokes flow in the
STEP mesh, observed for various decompositions into four subdomains

Tfact (s)Lbfpred max Fs max Ls Lbfeff

12846.0×10671 0.760.74GR
5.4×106 0.79 11670.78 67GR+SA/E

733GR+SA/F 3.5×106 0.95540.92
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Table VII. Timing results of the preconditioning step for two implementations obtained for the solution
of Navier–Stokes flow with the SQUARE mesh (32×32 elements)

Niter FIl (s) F0 I
−1l (s)P Impl. max Ns Tprepro (s)NI max N I

(s)

132.56.1×10−35.7×10−12 19I1 4851 163 163
id. id. 5.3×10−1I2 42.2id. id. id.

49.25.5×10−32.4×10−14 28I1 2467 338 169
id. id. 2.2×10−1 12.8I2 id. id. id.

17.27.6×10−38.9×10−28 51I1 1275 688 215
id. id. 7.2×10−2I2 id. 3.9id. id.

3.51.1×10−23.4×10−215 70I1 736 1062 201
id. 1.7×10−2I2 id. id. id. 1.3id.

where the load Ls is computed using Equation (25) and a bar denotes the average over all
subdomains.

This result confirms the importance of the decomposition quality on the performance of the
hybrid solver. Indeed, with the two-step strategy, the measured load balance increases from
0.76 to 0.95 while the factorization time is reduced by a factor of 1.7.

5.5. Effect of preconditioning

In Table VII, the computational requirements for the use of the preconditioner are
presented, with the two implementations I1 and I2 proposed in Section 3.4. The elapsed time
for the preprocessing step (Tprepro) and the matrix–vector products is shown, obtained with the
SQUARE mesh (9539 unknowns).

For the first implementation I1, the preprocessing time is large while the cost of precondi-
tioning F0 I

−1l is small compared with the matrix–vector product FIl. The opposite holds for
the second implementation. In fact, the preprocessing step includes the solution of N I

(s) systems
in I1 that are not performed in I2. On the other hand, with I2, Niter systems must be solved
during the GMRES algorithm. As a consequence, the first implementation is preferable when

Table VIII. Timing results with or without preconditioner obtained for the solution
of a Navier–Stokes flow problem with the SQUARE mesh (32×32 elements)

Precond. No precond.

Tprepro (s) Tinterf (s) Niter Ttot (s) Tinterf (s) Niter Ttot (s)PNe

1200 2 69 33 20 185 62 73 148
4 22 20 80131536626

6 13 41 228 47 203 54
15 2 14 58 17 126 347 128

2700 2 625 130 22 1437 298 105 984
4 190 81 30 447 254 194 448

2103131691176356318
7 42 84 5415 348 546 357

19714800 299 3268191121842832 22
770 220 32 17094 925 290 1708

8 170 157 78 496 560 485 756
15 24 97 102 144 723 729 757
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Figure 7. Evolution of the measured (——) and estimated (----) memory requirements for a Navier–Stokes flow
defined on a SQUARE mesh decomposed 15 domains.

the number of iterations is expected to be large compared with the local number of interface
nodes N I

(s).
Table VIII shows the reduction in the number of iterations of the GMRES algorithm when

the preconditioner is used. The preconditioner is not recommended for a small number of
processors because Tprepro is too high. The situation is different for a larger number of
processors because the computational cost of GMRES grows like the square of Niter. Indeed,
if P is large, the preprocessing time is relatively small and preconditioning becomes necessary.

5.6. Memory requirements

In the current implementation, the assembly of the local stiffness matrices is performed
sequentially before the matrices are broadcast to the processors. Clearly, this constitutes a
memory bottleneck that limits the size of the problems that can be run.

In Figure 7, the measured memory requirements is presented for the solution of the
Navier–Stokes flow on the SQUARE mesh with 15 domains, as a function of the total number
of variables N6. For medium and large problems, the memory is driven by the size of the L and
U factors of the local stiffness matrices while the size of the interface problem remains small
(about Niter descent directions of size NI must be stored).

Every subdomain of the SQUARE mesh decomposed in 15 subdomains has about N6/15
variables and the bandwidths of the local stiffness matrices are proportional to 
N6/15.
Therefore, the total memory Mest needed for the local factorizations can be estimated by

Mest#aN6×
N6, (28)

where a=2×10−5 is taken to fit the data of Figure 7. The comparison of the actual memory
required (plain line) and the estimated memory (dash line) of Figure 7 shows a good
agreement.

From Equation (28), it is seen that the largest problems to be solved on our Convex
Exemplar SPP system with 2 Gbytes of memory have about 260 000 variables (2D Navier–
Stokes problem on a square mesh). Note that in 3D, the size of the interface problem cannot
be neglected any longer because the interface size becomes close to that of the local problems.
In addition, a larger number of iterations are required before convergence is achieved.
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6. DISCUSSION

Our experience with the proposed hybrid solver opens some questions about the stability and
the accuracy of the formulation of the dual Schur method.

The construction of the null spaces of the local matrices requires special care. In this
implementation, the size of the null space is determined by the number of zero pivots
encountered during the factorization (or the number of pivots that are relatively small
compared with the value of the previous pivots). For stiff problems, or when the entries in the
matrix have different orders of magnitude, this test is unsatisfactory. On the contraction
channel divided into 15 domains, some parameters had to be tuned by hand to obtain the
proper null spaces. A more robust test using the singular value decomposition of the local
stiffness matrix could be investigated. However, this would substantially increase the cost of
the algorithm.

The next question deals with the iterative accuracy of the solution. We have no theoretical
relation between the accuracy of the GMRES algorithm and that of the global finite element
system. The accuracy of the global solution is one or two orders of magnitude lower. In
addition, the presence of floating subdomains seems to limit the maximum accuracy of the
solution of the global problem. Also, the accuracy of the factorization limits that of the
matrix–vector products and of the GMRES algorithm itself. Here again, there is no test to
provide a bound on the accuracy of the GMRES algorithm.

The preconditioner has been designed for the matrix FI. Neither its validity nor its
optimality have been proved for the projected interface matrix. Our experience suggests that
this preconditioner is still useful with floating subdomains. The expression of a projected
precondition interface matrix is under way.

Finally, we note that the hybrid solver may itself be used in a recursive fashion for the
solution of the subdomain problems. This would lead to a scalable multilevel approach
suitable for very large problem sizes on massively parallel computers. A different approach
could also use an iterative method for the solution of the local subdomain problems, assuming
that the null spaces can be correctly evaluated.

The goal of this work was to present an efficient parallel solver and to discuss its scalability.
The comparison with other state-of-the-art parallel solvers (such as a parallel GMRES
preconditioned with ILU) remains to be performed.

7. CONCLUSION

A parallel solver based on domain decomposition for the solution of general algebraic systems
that arise from the finite element discretization has been presented. This solver is hybrid, in the
sense that it combines a direct factorization of the local problems with an iterative treatment
of the interface system by a parallel GMRES algorithm. An important feature of the solver is
that it uses a set of Lagrange multipliers to enforce the continuity at the interface.

The decomposition of the finite element mesh has been formulated as a graph partitioning
problem. A two-step approach is used where an initial decomposition is optimized by
non-deterministic heuristics.

Parallel simulations of a Navier–Stokes flow problem carried out on the Convex Exemplar
SPP system with 16 processors show that the use of optimized decompositions and a
preconditioning step are the key issues to obtain high parallel efficiencies.
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APPENDIX A. SOLUTION OF A CONSISTENT RANK DEFICIENT SYSTEM

In this section, a general expression is derived for the solution of

Ku= f, (29)

when the matrix K of size N×N has rank rBN and f�Range(K). Without loss of general-
ity, K can be partitioned as

K=
�K11

K21

K12

K22

�
, (30)

where the submatrix K11 is of size r and has full rank. A block-Gaussian elimination of K21

reads� I
−K21K11

−1

0
I
��K11

K21

K12

K22

�
=
�K11

0
K12

K22−K21K11
−1K12

�
. (31)

Since rank (K)=rank(K11), it follows that

K22−K21K11
−1K12=0. (32)

Therefore, the generalized inverse of K is given by [13]:

K+ =
�K11

−1

0
0
0
�

. (33)

A general expression for the solution u can be written as the sum of a particular solution
of Equation (29) and a vector in the null space of K. More precisely, we have

u=K+f+Na, (34)

where the matrix N contains the basis vectors of the null space and the vector a specifies
any linear combination of these vectors. Since the matrix N contains vectors of the null
space, it must verify KN=0. This holds for

N=
�−K11

−1K12

I
�

. (35)

With the expression of K+and N, it is easy to verify that any u verifying Equation (34) is
solution of (29).
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APPENDIX B. PROJECTED INTERFACE SYSTEM

This appendix gives a new formulation of the interface system (13) that decouples the
Lagrange multipliers l from the rigid modes a. Equation (13) is rewritten as:!F Il−d=GIa,

subject to H I
Tl=e.

(36)

Equation (36) expresses the fact that the quantity FIl−d belongs to the range of GI. This is
reformulated by using the space orthogonal to Range(GI)—i.e. for all m in Ker(G I

T), the vector
l verifies

(FIl−d, m)=0. (37)

The symbol (., .) stands for the dot product. By decomposing the vector l in a component in
Ker(H I

T) and in a component in Range(HI), we write

l=l0�l1, (38)

with

H I
Tl0=e, H I

Tl1=0. (39)

Equation (37) then reads

(FIl1− (d−FIl0), m)=0. (40)

At this point, we define a projector PH onto the null space of H I
T and a projector PG onto the

null space of G I
T. Since the vector l1 (resp. m) belongs to the null space of H I

T (resp. G I
T), we

have

l1=PHl %, m=PGm %, (41)

where l % and m % represent any vector in RNI Inserting Equation (41) into (40) leads to

(FIPHl %− (d−FIl0), PGm %)=0, (42)

which is transformed into

(PG
TFIPHl %−PG

T(d−FIl0), m %)=0. (43)

Since Equation (43) is verified for any vector m % in RNI, we must have

PG
TFIPHl %=PG

T(d−FIl0), (44)

and the vector l solution of (36) is given by

l=l0+PHl %, (45)

H I
Tl0=e. (46)

Finally, an expression for l0 and a is derived. Since HI has full column rank (see Reference
[5] for details), the matrix H I

THI has full rank and is invertible. If l0 is expressed as:

l0=HIb, (47)

(recall that l0�Range(HI)), we have

(H I
THI)b=e, (48)
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or

b− (H I
THI)−1e. (49)

Given this last expression and (47), we have

l0=HI(H I
THI)−1e. (50)

The first equation of (36) can be written as

G I
TGIa=G I

T(FIl−d). (51)

Since the matrix G I
TGI has also full rank, an expression for a becomes

a= (G I
TGI)−1G I

T(FIl−d). (52)

The results of these algebraic manipulations have been summarized in Proposition 1 of
Section 2.
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